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Abstract *
de\ta S

The entropy of activation M’%r electron transfer reactions occurring

A

in concentrated electrolyte solutions is calculated, taking into account the
electrostatic and electronic contributions, By applying the mean spherical and

4 exponential approximations to treat a simple model of electrolytes (hard

charged spheres in a dielectric continuum), the pair distribution function 1

is calculated. These approximations are also used to calculate the elec-

trolyte reorganization term,\iﬁnce both quantities contribute to the
Je L A S.

electrostatic part ofjkﬁf Numerical application is made to the ferrous=-

A
ferric exchange reaction in 0,55 M HCL0,. Results of a preliminary electron

tunneling calculation for the electron transfer are included, Reasonable
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. agreement between observed and calculated A§$’;;’;;tained.
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I. Introduction

It is a pleasure to dedicate this article to our esteemed and beloved
colleague, Veniamin Levich, on the occasion of his sixtieth birthday, His
invaluable contributions to electrode kinetics, and his elucidation of
quantum effects in electron transfer reactions, are too well-known to all
of us to need documenting here. It is our hope that the next few years will

see him once again able to be active and thriving in this field,

The aims in the present paper are two-fold: (f) the investigation of
the large negative entropy of activation found for electron exchange reac-
tions, such as in Eq. (1.5) below, even at appreciable electrolyte concen-
trations, and (2) the introduction of recent statistical mechanical methods
for electrolytes intoelectron transfer theory, to treat salt effects.

The symbols and some definitions are first recalled: The rate con-
stant of electron transfer reactions is kr; the activation energy Ea is

defined from the slope of a plot of 4n kr versus the reciprocal of the ab-
solute temperature T as in
E,=-kadnkA(I/T) , (r.1) 1

where k is the Boltzmann constant (usually in cal/mole/deg). Eq.
(1.1) permits k. to be written as
k. = A exp(-E_/kT) . (1.2) i

A can thereby be calculated from the experimentally measured kr and Ea'
The kr can also be written in absolute rate theory form as'
k. = (k1/h)exp(~a6¥/kT) = (1c1/7n)exp( -at/kT)exp(as?7i) . (1.3)
A comparison of (1,1) to (1,3) then yields, using the: é‘ibbs-Helmho,ltz equation,
exp(ast/k) = as(kTern) . (1.4)
AS* is the entropy of the tr;nsition state minus that of reactants, each in
some standard state, The value of AS* depends on the units of A (e.g., A can

be in {/mole/sec or cm®/mole/sec, say) and thereby the standard state is
implied in As? (e.g., 1 mole/cm® or 1 mole/t).




For electron exchange reactions such as

Fe(H20) s*2 + Fe(H20) 6" — Fe(H20) 6> + Fe(H,0) 2 (1.5)

the experimental values of AS* are quife negative’ e.g., -25 cal/mole/

deg, and Ea is 9.9 kcal/mole, when measured at a fairly large ionic
strength (0.55 M perchloric acid), the excess perchloric acid being needed
to inhibit hydrolysis of the Fe(H,0)¢* ions. The standard state chosen in
AS* was | M, by choosing the units of A to be &/mole/sec. This large
negative ASlr is quite common for electron exchange reactions between small
hydrated ions’ and so our considerations are intended to apply to other such
reactions besides (1.5).

There are a number of contributions to AS*, including translational,
electronic (any electronic nonadiabaticity produces a contribution), and
electrostatic in the presence of the added electrolyte. The first of these
is readily estimated, the second has been roughly estimated in a recent
study,’ and the third is the main concern of the present paper.

The subject matter of the paper is subdivided as follows: In Section
II the ''nonequilibrium' distribution of coordinates in the transition state
is recalled,® The various contributions to the free energy of activation
AG* are given in Section III and the electrostatic one is further discussed
in Section IV, In Section V, the 'mean spherical'® and ''exponential''?
approximations for treating the electrolyte effects are described, and
the equations used to calculate the electrolyte effects are summarized.

An outline of their derivation is given in Appendix A, The numerical results
are presented in Section VI and discussed there, together with a comparison

with a more elementary model.




II. Distribution Function in Transition State
The N-particle distribution function p for all coordinates q (transla-
tions, vibrations, and orientations) of all molecules has been shown® to

be of the form p*, where

ot = ¢ exp(ui/kT) (2.1)
C is normalization constant and

ut(g) = u" + mu"-uP) (2.2) |
inthe transition state, Here, Ur('c.l) is the potential energy functionof theentire
system when the reacting pair consists of reactants, while uP is that when that pair
consists of products; m is a Lagrangian multiplier, obtained from a free
energy balance equation, The argument leading to (2.1) is recalled: The
transition state lies at the intersection of the U and uP potential energy
functions. To find it one minimizes the free energy of formation of this
state subject to this constraint® The Helmholtz free energy of formation
AF* consists of an energetic term and an entropic term, minus that of the

original reacting system 4
AF* = Ip *Urdg' * ij' [ *tn [ *dg' - constant . (2.3)
The equations of constraint are

[otvay = [otPu o 8
and
[ofd=1 . (2.5) 5

Minimizing (2,3) subject to (2.4) and (2.5) yields

0 = I(Ur+kTLn p*) bp*dg (2,6)
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0=J(u-vP)sptaq @.7)

AL (2.8)

Multiplying Eqs. (2.7) and (2.8) by Lagrangian multipliers m and -kT¢n C
and adding them to (2.6) ylelds (2.1) and (2.2).

The molecu lar parameters appearing in U™ and UP include bond properties
( force constants, equilibrium bond lengths, anharmonicity constants), ionic
charges, dipole moments, and Lennard-Jones parameters, u" and uP differ mainly
in the ionic charges of the reacting pair and in the bond properties of -
that pair, 1In determining the distribution function p:$, the charges of

the reacting pair behave as though they were e.* and ez*, where

et =e. 4 e, e (i =1,2), (2.9)

e‘r being the charge on particle i when it Is a reactant, and elp being that
when it is a product.

The above derivation used a canonical ensemble, which is related to
the Helmholtz free energy F. Eqs. (2.2) and (2.9) also apply when an iso-
baric ensemble, which is related to the Gibbs free energy G, is used in=-

stead, 5€




III. Free Energy Changes

in which the reactants are at some separation distance R, It contains a

translational contribution, AG*

trans. R’ 2" electronic-nonadiabaticity con-
]

tribution’ denoted by -kT 4n i, a work wr, both electrostatic and nonelec-
trostatic, to bring the reactants to a distance R, a configurational con-
tribution associated with forming the transition state at a distance R from
the equilibrium system of reactants at the same R, AGR*,
to unity associated with the fact that transition state may have fluctua-

and a term close

tions® in R, denoted by -kT 4n p:

st =ac} o +w et -kt an B (3.1)
’
AGIrans R arises as follows: The six translational degrees of free-
’

dom of the pair of reactants have a partition function (Zl‘l’m,kT/hz)"/z
(Zﬂmsz/hz)s/z, where m; and m, are masses of the reactants, These degrees
of freedom become three translations of the transition state, with a parti-
tion function (Zn[m.+m2]kT/h2)5/2, two rotations associated with a moment
of inertia wR? [p = mymy/(m,+m,)] and a partition function 8T2uR2kT/h?,

and one reaction coordinate R. Thereby, one finds

AGIrans g = - KT &n Zh/kT (3.2)

where Z equals

Z = (8 kt/w) /2R2 (3.3)
and is the averagecollision frequencyof two particles, at unit concentration,
moving in a continuos medium, The reaction rate is now'®

k. = pazexpl-(w" + acety /i) (3.4)

.

We consider first the free energy of formation of the transition state,




w' itself can be expressed in terms of the pair distribution function

g,2(R), defined more fully in Sec. IV; g,, is unity (outside the hard
sphere diameters) when the two particles do not otherwise interact with each

other or with the medium,

£
]

- kT 2n g,2(R) (3.5)
whence

k
r

#zg 2(R) exp( -0, T/kT) (3.6)

It has been shown elsewhere that when AGR* depends quadratically on the

"fluctuation" m in Eq. (2.2), it can be written as%b

AGR* = m*(Aoth;) (3.7)

where m is the Lagrangian multiplier in (2.2), Xi is the inner shell con-
tribution (e.g., due to changes in bond lengths and angles in the reactants)
and ), is the contribufion arising from outside the first coordination shells,
Lo includes the solvent and electrolyte reorganization outside those shells,
m is obtained from a simple free energy balance equation, 53, P

act-a6fP = 860 + wP-u" e
where AGIP is the same as AG; but starting from the separated products, and
AG®' is the ''standard'' free energy of reaction in the prevailing medium and

at the prevailing temperature,’
It has been shown that the polar ''outer!' contribution, m2\,, can be expressed

in terms of the differences of free energy of two equilibrium systems."’b'Sd

Namely, denoting m?\, by AGR o*‘ The latter can be written as
AGRTO =mo =610 - G, . (3.9)

Here, G,-o is the electrostatic contribution to the free energy of a system

whose central charges are e'*-e;-(l = 1,2) and which is otherwise similar to

™= . o

o
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tﬁe actual system, while G._OOP is the corresponding quantity for a system
with central ion charges ei*-e;-but whose orientational coordinates of the
solvent and position coordinates of the ion atmosphere do not respond to

any change in charges on the two central ions; only the electronic polariza-

tion of the system responds.

Since the charges ei* on the central ions are given by (2,9), the
central ions in system [1-0] in (3.9) have charges -mpe on ion 1 and

mAe in ion 2, where pAe is e.p-e,r, and so is -(ezp-ezr). I.e.,

State [1-0] = (-mae, mde) , (3.10)

the charges being a distance R apart.

To calculate the AG:,O in (3.9) it is necessary to calculate the elec~
trostatic terms G ,-o %P and G,-o, for the above two equilibrium systems.
For this purpose, as well as for calculating w'in (3.5), the various con-
tributions to the electrostatic free energy are listed in the next section.

For the symmetric system (1.5), treated in the quadratic approximation,

m equals - 1/2, a result which can be derived from (3.7)-(3.8); using

AG®' =0 and w" =wP,

|
2
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IV, Electrostatic Contribution to the Free Energies in Eq, (3.9)

As just noted, one needs the free energy of equilibrium systems,
Consider a system where the charges on the two central ions are
e, and e,, a distance R apart, the charges of the 1:1 eiectrolyte are
e; = -e; = e,and the mediumhas a dielectric constant D, There are two

contributions to the electrostatic free energy G.

G = Gsolv 7 Gaf:m ; (4‘,)

where GSOIV is the solvent contribution, outside of the inner shell, defined

as the contribution in the absence of the added electrolyte, (The

soly

inner shell contribution to G is contained in mzki in (3.7) and not in

the m?\, of (3.9) and so is not included in (4.1).)

solv

In a simple electrostatic model, G is the Born charging term plus

the worke e,/DR required to bring the ions together,'!

solv _ _e,? L et 1, L, ee
G it T ARl Pa s LR R (4.2)

where a, and a, are the radii of the solvated ions,

One can see immediately how Eq. (4.2) can be used in (3.9). One
replaces e, and e, by the charges in system [1-0], namely the -mAe and mie
of Eq. (3.9), then replaces D by Dop. One subtracts from this result the
corresponding quantity with D replaced by Ds' Thereby, the solvent con-

tribution to AG* is
R,0

$solv TR BGRIE SN T g
w2 mAe(Za'ﬂuza2 R)(Dop Ds) ' (4.3)

a well=known result, 5+!2

m

We turn next to the G2t in Eq. (4.1). 62t can bewritten as the electro-

static free energy of interactionof ions 1 and 2with their ion atmospheres when
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1 and 2 are far apart, plus the change in this ion-atmosphere electrostatic

free energy when the ions 1 and 2, surrounded by their atmospheres, are
brought from an infinite separation distance to a distance R apart, We

denote these two contributions by Gat"kw) and Asat"YR).

Gatm Al Gatm(

atm
(

©) + A6°(R) . (4.4)

atm

Both terms in G should reduce to zero at zero ionic strength by defini-

tion, and so the work term e ,e,/DR of (4.2) is not included in Gatm.

To calculate Gatm

it is convenient to define'3’'4 a pair distribution
function gij(r) for particles i and j: If pj is the average number of
particles of type j per unit volume then gij(r) is defined by the statement
that the average number of particles of species j in a volume element 4Tr2dr at a

distance r and r+dr from a particle of species i is pjgij(r)aﬁrzdr. gij(r)

has the property that!'Ss

gij(r) -1 as r-= , (4.9)

Consider a charging process of the central ions, where the charge of ions 1
and 2 is Ae, and \e, and \ goes from O to I, The charges in the ion atmo-
sphere are e; and e,. The 9,j when 1 and 2 are infinitely far apart is
denoted by g.j(r;kel) at stage \ of the charging process (j = 3,4). The

potential acting on ion | at its center, due to the ion atmosphere is,

Wlk o I{[psesgus (ri;hey)) + pses944 (rihe)]/Dr}amredr | (4.6)

Multiplying by the charge increment d(Ae,), integrating over \, and adding

the corresponding term for ion 2, one has Gat"km),

Gat"k°) = x[é*lxel + ¢2kez)dl . (4.7)
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Finally, the term AGatnk

R) in (4.4) can be expressed in terms of ap-
propriate differences of electrostatic work terms to bring particles 1 and
2 together in the medium: The electrostatic contribution of the atmosphere
can be defined as the total work to bring particles 1 and 2 together when

they have charges e, and e, minus this work when the atmosphere is uncharged,

i.e., minus -kT ¢n g,,°(R) + e,e,/DR. Using (3.5) one has

AGat"kR) = - kT 2n[g,2(R)/9,2%(R)] - (e,e,/DR) . (4.8)

At zero ionic strength this AGat"k

R) vanishes,

Since the ion atmosphere in the [1-0,0p] system in (3.9) does not res-
pond to the charges on the central ion, the atmosphere contribution to the
G.-oop in (3.9) is zero, and so the atmosphere contribution to AGR,0$ is
=G -0, and is the sum of (4.7) and (4.8), with e, and e, replaced by -mAe
and mAe, respectively,

It remains to calculate the gij's in (3.6), (4.6) and (4.8), and for
this purpose the mean spherical and exponential approximations are described
in the next section,

Before giving these equations, it is useful to just consider a more
elementary model, based on Debye-Hiuckel theory. The solution of the linear-

ized Poisson-Boltzmann equation for the total electrostatic potential at a

point r outside of a central ion 1, Yi(r), is'®
yi(r) =(e/Dr)exp[-n(r-R)1/(14+xR) (r > R) (DH) |, (4.9)

when R is the distance of closest approach of the atmosphere to the central

ion. DH denotes Debye-Hickel, The electrostatic work reguired to bring an

ion 2 of charge e, to a distance R, W,2(R), is ey ,(R), i.e.,




o el

it o SRR

W, 2(R) = (e,e2/DR)/( 1+xR) (DH) . (4.10)

The value for the pair distribution function g,,(R) is, in the Debye-HUckel

approximation,

gi2(R) =1 = BW,2(R) ’ (4.11)

where 8 = 1/kT. If one used the exact W ,(R), its relation with g s(R)
would be

g.2(R) = exp( =BW,2(R)) (4.12)

If one were to use (4.10) and (4.11) one would encounter a serious error--
even a negative g 2(R). If, on the other hand, one were to use (4.10) and
(4,12), i.e., an "exponential' form of the Debye-Huckel, the error in g,

is found to be less, '” In treatments of kinetic salt effects by Debye-
Hickel theory, one in fact forgets about the linearization (4,11) used there
in the derivation, by using (4.12) and focusing attention on the calcula-
tion of a free energy term and including it in the free energy of acti-
vation, i.e., including it in an exponential in the rate constant expressidn.

An uncertainty arises in the Debye-Huckel picture when the diameter
of the principal ions in the atmosphere differs from that of central ion
2. In the interest of simplicity this difference in diameters will be
neglected in Eqs. (4-13)-(4.17), just as it was in (4.10).

In computing the 4n g,,/9,.° term in (4.8), where now g,,° is unity,

one obtains
-kT 4n g,2(R)/9,2%(R) = W 2(R) =(e ,e2/DR)/(1+xR) (oH), (4.13)

regardless of whether one uses (4.11) and then expands the logarithm, thus
"yndoing'' that approximation, or uses (4.12) directly,

The Gat"kw) term given by (4.7) and (4.6) is also estimated: The g,s

appearing in (4.7) is given by




'
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gis =1 - Bes¥(r) =1 - esBre {exp[-x(r-R)]}/(14xR)Dr . (4.14)

Noting that g, is given by a similar expression with es replaced by e,,

i.e., by -e, Eqs., (4.6)=(4.7) yield
62tMw) = ~(e,2+e;2)n/20( 144R) . (4.15)

Finally, one obtains from (4.4), (4.8), (4.13) and (4.15), that

ot e K[‘;'(elz'*ezz)*elezl/D( 144R) (oH) . : (4.16)

The reorganization term is obtained by replacing e, by -mAe and e, by

mAe, whence

Acz,oatm =0 (DH) . (4.17)

Other Debye-Hlckel methods®P give slightly different results than (4.15)-
(4.16), e.g., from solution of the linearized Poisson-Boltzmann equation

when ions | and 2 are fixed a distance R apart, Gatm

is then defined as
the electrostatic work to charge these two ions minus that when their ion

atmosphere is absent,

T e g

e kabio deo Al b e s et s iy B

Rl el ahicol el o
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V. Mean Spherical and Exponential Approximations

A. Description of Approximations

The mean spherical approximation (MSA)® employs the linearization pre-
sent in Debye-Huckel theory and introduces hard sphere radii, but is sta-
tistical mechanical in nature, Whereas the Debye-Huckel theory
does not allow for hard sphere repulsion between the ions belonging to the
fon atmosphere, the MSA does, The MSA yields good agreement'® with activity co=-
efficients, calculated numerically (Monte Carlo), in the concentration
range Ol tol M. It does not give accurate results for the radial distri-
bution functions on contact’¢’'® For this purpose, the 'exponential approxima-
tion" (EA)] which makes use of the MSA result but attempts to correct for
the linearization, is much better, as judged by comparison with exact statis-
tical mechanical numerical (Monte Carlo) computations, 7¢

To calculate, thereby, the g,,(R) at contact in (3.6) and (4.8) the EA
is used below, while to calculate (4,6)-(4.7) the MSA is used. (For
activity coefficients its results are comparable with EA,)

These approximations are described next.

First, recalling the definition of gij(r) in the previous section one
notes that when there is no interaction between the particles then for all
i and j

9ij(r) =1 (all r) . (5.1)

Thereby, hij(r) defined as
hij(r) = gij(r) -1 (5.2)

reflects the interparticle interactions and, in virtue of (4.5), approaches

zero for large interparticle separations,

e B e Sl e o i b
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It is very convenient to define a new function,"cu(r), related to
hij( r), but that expresses correlations between i and j more directly
than does gij’ by being more related to the intermolecular potential it-
self, For that one decomposes h(r), for a one component fluid, into a
chain of integrals of this new function C(r). That is, if C(r,2) correlates
directly the small volume elements from positions I, 2, where r,, denotes ’.':.",';zl'
then h(r,;) is constructed from the sum of the direct correlation C(r )
plus the direct correlation of a particle at r with the particles p drs
in I3, multiplied by the direct correlation of those at ry with those in Fa2s
integrated over all rs, plus the direct correlation of the particles at I
with those at rs, multiplied by that of those at Is with those at Fes and
then by those of T with those of ra2, integrated over all Is and T and

SO On,

h(l"lz) = C(r|2) e IC(I"|3)DC( l"32)d?3 + J‘C("H)PC( fs‘)pC(r“)d?;d?‘ L A

(5.3)
or using the symbol % for a convolution integral:

h(r) = C(r) + C#PC + C#pC#pC + ... (5.4)
This definition of C(r) can be seen to be completely equivalent to

h(r) = c(r) + h(r)¥*c(r) . (5.5)

which gives (5.4) upon successive iterations. Eq. (5.5) is the cele-
brated Ornstein-Zernike equation.'?®

The generalization for mixtures is given as

hij(rij) = cij(rij) +§, pLJ‘cn rl{,)h&j(rl,j)mrtjzdr&j & (5.6)

In matrix form one has

|- g
i
e
(£
II;
o
e

(5.7)

R e P S T g N S P W PP NG T O ¥ PR O STy e S waprw vy
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where P is a diagonal matrix.

When each molecule is treated as having a hard spherical core, the
9 vanishes when Fij is less than the mean diameter, (di+dj)/2‘
Hence

3 s L
hij(rij) ==1 , Fij < dij = 2

(di+dj) % " (5.8)
If one had a system consisting of a mixture of uncharged hard spheres, the

interaction between molecules is zero outside the distances of closest

approach, Making the approximation that
Cij(r) =0 for r > dij (hard spheres) (5.9)

and using condition (5.8) one obtains the well-known Percus-Yevick (PY) ap=-
proximation, 2° which is an excellent description for the fluid region of hard

sphere systems. This fluid serves as a reference system for realistic dense

fluids and for electrolytes, 2

To solve the set of equations (5.7) for electrolytes some
knowledge of cij(rij) is needed for those systems, just as it was in the
PY case, a knowledge hidden in the higher-order distribution functions. We
proceed to motivate and give the choice made in the case of the mean spheri-
cal approximation,
In the limit?? of p - 0, Eq. (5.4) shows that C approaches h. But h
approaches the simple Boltzmann value when p - O:
4im cij(rij) = hij(rij) = exp(-Bvij) -1, (5.10)
p-0
where B denotes 1/kT and vij is the interaction potential of i with j.

For sufficiently low svij, expansion of the exponential yieldszs

(r:0) . (5.11)

S R
The mean spherical approximation, introduced by Lebowitz and Percus,°b
consists of assuming Eq. (5.11) for r>dU, for any density p, then solving {5.6)

subject to (5,8), The solution reduces to the linearized Debye=-Huckel
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result when dij is made to approach zero, and to the hard sphere PY equa-

tion when the charges e, are made to vanish, .2

The exponential approximation of Chandler and Anderser’ attempts to
undo the linearization embodied in (5.11) Its distribution function
gijEA is obtained to be the hard sphere pair distribution function gij°

multiplied by a suitable exponential,?*

EA . 0

ij (rij) = 9;; (rij)exp( Bwij) : (5.12)

By an optimization procedure they obtained an effective potential wij,

which in our case i‘s well approximated by the mean spherical approximation
oo

to gij and by gij s

MSA 0

-g..

-BW 2
B J 1)

i = 9, (5.13)
(In Eqs. (4.10) and (4.12) of Sec. IV, Eq. (5.12)-(5.13) were also used
for i=1, j=2, at r;,=R, but with g.ZMSA replaced by the Debye-l-l::'ckel
value (4.11) for g, 2, and with g9, replaced by unity.)

Some qualitative insight into(5.12)-(5.13) is obtained as follows:
gij( r) is related, via an exponential, to the work required to bring i
and j to a separation distance r fromo, Eq., (5.12) presumes that this
work is the sum of the hard sphere work plus an additional ionic work.

MSA

Remembering that gij is a linearized gij’ one would write for it, in

the same spirit as (5.12),

MSA ~ o _
9;- gij 9

(] 3 o _
j BWy; = 9;;° - B,

i) (5.14)

where we have set gij° equal to unity in the second small term on the right hand side,
However, (5.14) is seen to be none other than (5,13), Egs. (5,12) and
(5.13) provide the '"exponential approximation'' and yield an improved

value for the value of g'j at r That is, to use this '‘exponential

=d
ij iy
approximation’'it suffices to solve the problem in the "'mean spherical approxi=-

mation,'




B. Equations for the glj's

The g,,°(R) for the hard spheres (PY) system, in the presence of an

uncharged atmosphere of particles 3 and 4, occurs in(4.8) and is given by?®

912°(R) = (1-8)=' +(3R/2L)g(1-8)" % , (5.15)
where g is the ratio of the total hard sphere volume of the atmospheric

ions 4m(L/2)3N/3 to the total volume V:

g = mpL3/6 P=1Ps+P . (5.16)

The W,, present in Eq. (5.12) and (5.13) at r,, =R, is shown by

Eq. (A.28) and (A.30) of Appendix A to be given by

Wi2(R) = (e,e/DR)(1+p)2/q2 | (5.17)

where

P =(1+2nL)'/z ,9=1+p+uxR, ¥ = (z.ﬂpez/okr)"’ - (5.18)

% being the inverse Debye length. Clearly (5.17) tends to e ,e,/DR when
the atmospheric number density p tends to zero. The g,,(R) in Eq. (3.6)

is now given by (5.12), using (5.15) and (5.17).

In Eqs. (4.6) a quantity such as g,s(r)=g«(r) appears when e; =
-e, = e, According to two of the equations in (A,6), and the relation
between 95 and hij in (5.2), this g,3-9,4 is given by the following, where

the charges on the central ions are explicitly indicated as Ae, and Ae,,
gis(rike;) = g(rire)) = 2h(r;rey) (5.19)
and similarly

gzs(rikez) = J24(rikey) =2he,h (rihe )/ne, (5.20)




(The latter could also have been written as 2hy(r;rez), since h, is a

linear function of the charge of the central ions.) Further, the integral
of h, over r, multiplied by various constants, is the same as the integrals
of the g,3s-9,4 and g,3-g,4 that appear in Eqs., (4.6)=(4.7), and is given by
Eq. (A.19). In this way one obtains from (4.7)
62 M) = -(e,2+e,2)u/Dq (5.21)
a result which may be compared with (4.15),
On the other hand the AGatm(R) in (4.8) is obtained from the contact

g,2 values. By using (4.8), (A.28), and (A.29), one finds

06%*"(R) = (e e2/0R) [(1+p)2-q21/q? . (5.22)
Thus, from ( 4.4), (5.21) and (5.22) one has

G¥™ = (e, 2+e,2)(WRA) + € e, [( 14+p) 2-q2] /q2}/IR . (5.23)

-To obtain the atmospheric contribution to AGR :

one uses (3.9) and
(5.23), but replacing the e, and e, in the latter by -mAe and mAe, and

the D by D. This gives the amosphere contribution to G ,.o,. There is

no atmosphere contribution to G?Eo, since by definition the ion atmos=-
phere and orientational coordinates do not rearrange in the [1-0,0p] system;

only the electronic polarization responds to changes in charges on the

two central ions, Thereby, the atmospheric contribution equals

AG:"’;"‘. -635% = m2(ne) {uR) 2 /9?0 R . (5.26)

In summary, AG*
R,

g, 2(R) in (3.6) is given by (5.12), (5.15) and (5.17), while Debye-Hlckel values

oS obtained by adding (5.24) to (4.3), and the

are given by (4.13) and (4.12). The former equations are just as easy to

apply as the latter,




Finally, the w" appearing in Eq. (3.5) is related to W,,(R) and g,,°(R)

via (5.12).
w' =W,2(R) = KT 4n g,2%R) .
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(5.25)

The expressions obtained from these equations for various contribu-

tions to AS*, using -aAG*/aT, are as follows:

The translational contribution is obtained by differentiating Eq,

(3.2), using (3.3), and is given by
+ ke -

Astrans,R = k 4n(ZWKT) - (K/2) .
The electronic contribution is

*_ -
ASel =k 4n «

neglecting any temperature dependence of x.

(5.26)

(5.27)

The entropic work term, 3w'/3T, obtained by differentiating (5.25)

and (5.17) is

AS r* =k 4n g,2° - (eiez/D_TR)[(1+p)/q2] {8( 1+p) ~[xR(O=1)( 1+p#L)/pql} , (5.28)

w

where § denotes -9 4n Ds/a 4n T,

The corresponding term at zero ionic strength is obtained by setting

Pp=q/2 =1, The corresponding Debye-HUckel term, obtained by different~

iating (4.10), is

as f(on) = ~( e 1e2/D_TR) (20+6xR+R) /2( 144R) 2
w

(5.29) .

The solvent reorganization term, obtained by differentiating (4.3), is

* SO'V = 2
AsR.o = m?(Qle) 8/D TR

neglecting the temperature dependence of Dop.

(5.30)

sty
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The ion atmosphere reorganization term, obtained by differentiating

(5.24), is
As:,oatm ;- ‘.mZ(Ae)z[(xR) z/qsos'ml{qeﬂ g-1) [1+p-(xL/p)]1} . (5.31)

The ion atmosphere reorganization term in the Debye-Hicke! approxima-

tion, obtained from (4.17), is zero,

For the electron exchange reaction (1,5), the value of m is, as al-

ready noted, -1/2,

b e
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VI. Numerical Calculations and Discussion

Using the ionic diameters?% given in Table I the various contribu-
tions to AS* are calculated from the AGlr contributions using -aAs*/ar.
They are summarized in Table I, The agreement with the net experimental
value at 0,55 M HCLO, is seen to be quite reasonable, based however on the
rough estimate for the nonadiabaticity factor % in ref. 4, There is seen
to be a substantial contribution of the ion atmosphere to AS*, as expected
from the extensive atmosphere shielding involved, The various solvent and
atmosphere terms are further classified into ''work' type (wr type) and re-
organization type (AG:’O type) contributions. The g,,% R) appearing in
Eq. (5.15) is 1,08 at 0.55 M HCLO,.

It is interesting to compare the effect of the ion atmosphere on AG*
and AS*, calculated in Table I, with that calculated from the Debye-Hlckel
theory. The results are given in Table I and are seen to be strikingly

close to the mean spherical results (in the exponential approximation for
both). Nevertheless, the MSA is readily generalized to more complex sys-

tems, whereas the DH is not,

In the present treatment, the central ions were taken to be of the same
size (diameter R), as were the ions in the atmosphere (diameter L), One

can readily generalize to arbitrary sizes of each of these ions, using the

- exponent ial approximation, with the form of the mean spherical approximation

results obtained by Blum and Héye, 27P
A second generalization is in calculating the fluctuations in separa-
tion distance R in the transition state, instead of largely restricting it

to the ""hard sphere contact distance.,'" One would maximize with respect to

i
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r, i(r)z(r)g,z(r)exp(-BAG; o), r being the separation distance (replacing

27b

R). gi2(r) is given approximately by

g12(r) = 9,2%r)exp{ Hi2(R)(R/r)exp[-2I(r-R)]} |, (6.1)

where H,2(R) is given by Eq. (A.29) of Appendix A and where 2T" is p-I,
Eq. ( 6.1) applies to equal size central ions and a symmetric atmosphere,
but can be generalized,?27b

The present equations become less accurate, as judged by comparison
of the exponential approximation with Monte Carlo results,in the range
around 0,01 M for very highly charged signs. '® The phenomenon usually
termed "ion-pairing' occurs there, and at lower densities, and one needs a
more sophisticated approximation, such as perhaps the hypernetted-chain
one, '89

It should be emphasized of course that the model employed here for
salt effects is the primitive one, containing as it does only hard spheres,
without specific fonic interactions and not allowing for solvent structure
breaking and forming effects, Some discussion of deviations from the di-
electric continuum approximation is given in Ref, 18g,

In summary, the use of the Debye-HUckel treatment to calculate the
electrostatic free energy tacitly makes use of the ''exponential approxima-
tion'" but with a Debye-Hiickel g,, replacing a mean spherical one. The

mean spherical equations for symmetrical systems are not more difficult to

use than the Debye-Hlickel ones. They treat the hard sphere excluded volumes

in a more self-consistent manner, and can be generalized to less symmetri-
cal systems. The calculated result for the entropy of activation in Table

I agrees well with the experimental one, but the electronic-nonadiabatic

contribution® should be regarded as a preliminary one,
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Appendix A, Mean Spherical Approximation, Physical and

Mathematical Ideas,

A simple model of electrolytes of N species will be used, character=-
ized by the number density of ions Pi» ion charge e hard core diameter
di and dielectric constant D. There is also the added condition of over-
all electrical neutrality, i.e.,

N
kE]pkek =0 . (A.T)
The M.S.A. consists of Ornstein-Zernike equation'® plus the Lebowitz-

Percus assumption®® about the behavior of Cij( r), namely Eqs. (5.7), (5.8),

(5.11), and Eq. (A.1), with viJ. being

Vij = eiej/Drij & SO SRR (A.2)

One can, incidentally, show directly from these equations that the M,S.A,
satisfies the stillinger-Lovett?®,2? moment relations, a result which fol-
lows from an observation of Groeneveld,3° and which has the implication of pre-
dicting oscillations in the charge density around a given ion at high ionic
strengths,

The solution of the equations (5.7), (5.8), (5.11), (A.1), and (A.2)
was first obtained by Waisman and Lebowitz and can be found in references
6¢c, 6d and 6e, The techniques employed extended Wertheim's
method3' for solving the PY equation for pure hard spheres, later used by Lebowitz?®
for the PY mixture of uncharged hard spheres, For the case of symmetric
electrolytes, the problem was solved completely, while for the asymmetric

case, the solution led to a set of coupled algebraic equations, Blum,?2?

utilizing Baxter's3? application to fluids of the Wiener-Hopf integral
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equation solving technique, was able to reduce the problem to solving a
single algebraic equation of higher order, an equation which reduces to a
quadratic one in the case of the present problem of a symmetric electro-
lyte surrounding the two central equal-size ions., For this simpler prob-
lem we shall use instead a method of solving the equations which avoids

the complications of the previous methods and uses the known solution for
symmetric electrolytes found in Ref. 6d.

In the present case the ionic atmosphere consists of a symmetric elec-

trolyte, composed of ions labelled (3,4), with

es =-¢, =e , d3y=d; =L<R, Ps=ps =p/2 (A.3)
and with the central ions labelled (1,2) with charges e, and e,, and

dy =dy =R ., ~pr=p; =0, (A.4)

Because of this symmetry it readily follows from the Ornstein-Zernike
equations, plus the associated conditions, that the matrices h and C are

symmetric and that for the symmetrical 1:1 electrolyte one also has

hss = hgs , C33 = C4 . (A.5)

These quantities are the same as those in the absence of ions | and 2,
since p;, = p, = 0., They can be taken as known, since the solution to the
problem of a 1:1 symmetric electrolyte by itself is available,® and is used

later via the functions o and h in (A.11), etc. One next defines
h = (hss=hss)/2 , b = (hss+hse)/2 , C = (C33-C34)/2, € = (C3s3+Css)/2 .

It can be seen that by adding and subtracting the Ornstein-Zernike

equations for the indices 13, 14, 23, 24, using (5.11), (A.5) and the sym-

metric nature of the matrices h and C, ore obtains,
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hys=h, +h, , hys=nh + (ez2h,/e,)

(A.6)

n

hie =hy=h, , hy=h - (ezh/ey)

and an identical set of equations with the h's replaced by C's, Here,

the functions B., E. and h,, C, satisfy the following decoupled linear

integral equations: ]

h|=C|+ph|*C !
(A.7) 4
hy =0, r<R,; C)==Bee,/Dr , r >R,
and
‘F!' =E| +pi"l|*e
(A. 8)
ﬁl=-l, r<R;, ; el=°’ r >R, ’
k : where .
]
Ry = 3(LsR) . (A.9)
Equation (A.8) contains no ionic charges and actually is the same

as the PY approximation for a binary mixture of uncharged hard spheres
of two species, one of diameter L at a density p and one of diameter R
at a vanishing density; ﬁ, represents the unlike particles total pair
correlation, Its solution is obtained as the limit of the Lebowitz

general solution?® of the PY approximation for mixtures, by letting one

of the p's vanish, but is not needed here, and so is not cited,
It remains to solve Eq, (A.7). Auxiliary functions o,(r) and o(r)
are first defined:
- C, - pee,/Dr r<R, 1

ar)/2mpr = (A.10)
hi(r) r>R,

i




27

-C - Be?/Dr el
o(r)/2mpr = . (A.11)
h(r) rsL

(Auxiliary functions have been introduced to solve other integral equations,
and were used for the first time by Wertheim®' to solve the PY equation,
The addition of the Coulombic term was one of the key steps introduced by
Waisman and Lebowitz®©™® to solve the mean spherical integral equations
for electrolytes.) Using bipolar coordinates Eq. (A.7) can then be written

x2 e, o L 2 r+y
olr) ==32t-[oy)e(t=[r=y[) [ o(x)dx = Z= [oi(y)dy [ dx, (A.12)
R, | =yl R, >yl
where

8(z) =1 if z>0 , =0 otherwise, (A.13)

One now takes the Laplace transform of (A, 12), obtaining

G(s) = -[(n?se,/2e) - s?F(s) -u2V]/[s?-u%=sFs(s)] , (A.14)
where
Gy(s) =?c,( r)e " dr ; Fi(s) = ‘Z"o.(r)e'srdr : (A.15)
Ri
Fa(s) = F(s) =F(-s) with F(s) = :]: o(r)e”Sdr , (A.106)
and .
V, =G,(0) =?o.(r)dr i (A 17) 4

Ry
Eq. (A.13), which contains two unknowns F(s) and G(s), is a solvable

functional equation,3* By imposing the appropriate analytic properties’s
of Gy(s) and F/(s), both of ihese functions can be obtained. The details

are found in the literature, %¢¢® By now performing the inverse Laplace




28

transformation, one obtains o,(r) and, thereby from (A,10), the following 4

explicit result for C,(r):

28e?V,/D , r< Rz;" =\
Cir) =< (28e?v /D) [1+{VW(r-A)2/2r}] , A<r<R, (A.18)
-ge e/Dr , r>R, ,

! where the quantities V and V, are associated with the mean potential energy

of the Coulomb potential and are given by:3¢

V = [ 2mprh(r)dr = =x/(1 + p + xlL) (A.19)

and
-]
Vi = [ 2mprhy(r)dr = - en/eq (A. 20)
Ry
where x, p and q are defined in (5.16) and (5.18).

The explicit knowledge of C,(r), given (A,18)~(A.20), can be used to !
obtain hy(r) by Fourier transforming the top line of Eq. (A.7). One ob-

tains

Ri(k) = Ti(k)/01-pC(K)] (a.21)
where ?\'.( k) stands for the integral of h,(r)exp( ib-:)r’sinede@dr, inte-
grated over 8, @ and r, and similarly for C(k) and C,(k). Also one can
write another important quantity, by noting that directly from (A.7) it
follows that h\(r)-C/(r) is continuous across r = R,, yielding h.(R."') =
c(R,") - c(R,7), because h,(R,”) =0. (R," =%imR,+c as ¢ » 0 for

€ >0,) One thus obtains

h|(R|+) = -ZBee./DR 9 . (A.ZZ)
The component h,, can be written now in terms of known quantities:

hiz = H;2% + Hyz (A.23)
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and similarly h,, and h,, can be expressed in terms of H,,° and H,,. Here,

Hi2° is defined by (A.24) and H,, by (A.26).37

Cpo*Pf\l*El

Hi2%==1 , r<R (A.24)
o =« 0 r>R

So defined, H,,° satisfies the PY equation for the uncharged hard sphere
mixtures problem, but for the central ion-central ion correlation, and its

solution is completely known.3’ In particular,
912°(R) =1 +H,°R) = (1-8)"" + 3 (R/U)E(1-8)72 ,  (A.25)

a result quoted in (5.15),

H,2 is defined via

Hi2 =@ + (ezle.)ph.*c.
(A.26)

Hi2=0, r<R; ®=-pe,e,/Dr for r >R .
The main problem is to obtain from Eq, (A.26), using (A.22)=(A.24),
the value of H,,(r) as r approaches R from above, This can be done in a
cumbersome direct way, or indirectly by first showing that in the interval
(0 <r<R) h*C, is a linear function of r, Since P¥(r) equals -(e,/e)h *C,

for r < R, one then finds a value for @(r):3®

®(r) = (pee2/D)(2v, + (req,*/en?) , r<kR , (A.27)

and

q, = ZWPthl(RI+)




From this one obtains

Hi2(RY) = ®(R*) - ®(R7) =-(Be,e2/DR)( 14p)2/q? . (A.29)

From the first equation of (A.23), expressed in terms of the g's in-

: stead of the h's and using the first half of (A.25), one has

Hi2(R") = g12(R) - 9,2%(R) . (A. 30)

Thus, the =BW,, in Eq. (5.14) is given by

- BW2(R) = Hi2(RT) (A.31)

at r =R, Eqs. (A.29) and (A.31) yield (5.17).
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potential wij {namely, e'ejexp[-u(r-dij)]/b(I+ud'j)r}. The approxi=
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the cases tested. Unlike the exponential approximation it was not
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lations described later,
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(a) A, F. Wells, "Structural Inorganic Chemistry" (Oxford University
Press, New York, 1950), also ref, 4; (b) R. H, Stokes and R. A,
Robinson, J. Soln, Chem. 2, 173 (1973); R, Triolo, J, R. Grigera, and
L. Blum, J. Phys. Chem. 80, 1858 (1976); (c) B. B. Owen, R. C. Miller,
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( lations are that (i) [Q;(r)dr from r = 0 to = is -e,, and that (1i)
: : J‘Q%( r)ridr, multiplied by Pre, integrated over r and summed over £,

equals -6 % ;;‘Le&’/nz where » is the inverse Debye length, Stillinger
4

st

and Lovett?® have given strong physical arguments for these relations,
and the relations agree indirectly with Monte Carlo results [ecf.
Ref, 18 and J, Rasaiah, Chem, Phys. Letters 7, 260 (1970)].

; The moment relations predict charge oscillations, as one can show from

i standard Inequalities, E.g., for the symmetric case of a binary mix-
ture, P, =p, =p, ¢, = -, =e, d;, =d, =d, and the moment relations

read fQ.( r)dr = -e, J'Q.( r)r2dr = -6e/x2, the integrations being from

E r=dtor =», and one finds from those results that Q,(r) is not al-

* ways of one sign, i.e., charge oscillations occur, when xd > /B .

1 The two moment relations are satisfied in the linearized Debye-Hickel
t system with dij =0, but only the first is satisfied by the Debye=Hlickel

theory with finite dij'
[ 30. Groeneveld (private comunication to Waisman) pointed out that the
moment relations are satisfied by any approximation whose cij( r)

; # behaves as -seiei/Dsr at sufficiently large r. Thereby, they are
; satisfied by the Debye-Hlickel equation when dtj =0, (When dij #0

‘ the "modified" Debye-Hlckel does not satisfy the Ornstein-Zernike
equations.) The moment relations, and the resulting charge oscilla-
tions do not impose a severe restraint on the thermodynamic properties,
since the latter are reasonably well satisfied by equations such as the
Olivares-McQuarrie one,?* which do not show the oscillations. The dif- {
ferences might affect other properties, however, perhaps such as the
capacitance behavior of an electrode immersed in an electrolyte.

. P

31. cf. M. Wertheim, Phys. Rev, Letters 10,321 (1963); cf, E. Thiele, J.
Chem, Phys. 39, 474 (1963).

32. R. J. Baxter, Aust, J. Phys, 21, 563 (1968); R. J. Baxter, J. Chem,

3 Phys. 52, 4559 (1970); B, Noble,'Methods on the Wiener-Hopf Technique,"
s (Pergamon Press, New York, 1958),

33, The solution is given by Eqs. (2) and (3) of reference 6d, by noting,
however, that we are using indices 3 and 4 instead of the | and 2
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34, Actually in our case is quite easier than the general case, because
Fa(s) is a known function and (A.12) and therefore (A, 14) are just
scalar equations and not matrix ones,

35. Gy(s) Is regular for Re s > 0 and F(s) is entire in the s-complex
' plane,
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36,

37.

38,

35

This is a general characteristic of the M.5.A.: the excess potential P
energy enters as a coefficient in the algebraic equations one obtains
as described before,

Since ﬁ. and C, are known, the first and third equations in (A, 24)
give H,;° for r > R, while the first and second equations give ®° for
r <R. Thereby, H,,° (using the second equation) is known for all r,
and so Is ¥°% Eq. (A.25) is obtained from Lebowitz' solution,?5 as the
limiting case of the pair distribution function of the larger particle
with another of its kind at the 1imit of vanishing density for them,
but at a given finite density for the smaller spheres species,

Hi2 Is known once h, and C, are known, following a similar reasoning
to that in Ref, 37. Also, since ®(r) is a linear function of r for
0O<r <R, it is completely determined by ®(0) and %‘f-(o); i.e,, in
virtue of Eq, (A.26), by the values of =h,*C, and - %,-(h.*c.) at the

origin, These derivatives are easily found in terms of the quanti-
ties given in (A.20) and (A.22).
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Table I

Ferrous=Ferric Electron Exchange Reactions,
Contributions to AS"I and Related Data, ¥

Contribution Q_Si Qé_"_
(0.55 M HCLO,) (0 M HCLO,)
(cal/mole/deg) (cal/mole/deg)
Translation =10, 1 same
Nonadiabatic -9.2 same
l solvent reorganization 0.6 same
Entropic work term (-3w'/3T) -5.2 -14,9
Atmosphere reorganization -0.1 0
Total 24,0 -33.6
| Experimental -25,0 -
,: Entropic work term, Debye-Huckel,
‘ (3w AT -5.0 -14,9
Atmosphere reorganization (DH) 0 0
act act
(0.55 M HCLO,) (O M HCLO,)
(kcal/mole) (kcal/mole)
Work term w" 1.2 3.2
Work term w', Debye-Huckel 1.2 3.2
Atmosphere reorganization 0, 02 0

0
#*Diameters d, =d, =R =7 A, 288 dy =d, =L =4 R, 26b

2 4nD/3 tn T =1.26 and D_ = 87.9 at 0%, t¢c
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